Эта часть работы выложена в ознакомительных целях. Если вы хотите получить работу полностью, то приобретите ее воспользовавшись формой заказа на странице с готовой работой:

https://stuservis.ru/kursovaya-rabota/314423

Тип работы: Курсовая работа

Предмет: Охрана окружающей среды

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ 2 ИСХОДНЫЕ Д

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ 3

ОПИСАНИЕ ТЕХНОЛОГИЧЕКОЙ СХЕМЫ ОЧИСТКИ ПРЕДПРИЯТИЯ 5

ОБОСНОВАНИЕ ПРОЦЕССОВ ОЧИСТКИ 8

ОПРЕДЕЛЕНИЕ ЭФФЕКТА ОЧИСТКИ КАРЬЕРНЫХ ВОД 20

КОНТРОЛЬ РАСХОДОВ СБРАСЫВАЕМЫХ ОЧИЩЕННЫХ СТОЧНЫХ ВОД 22

ПРИМЕНЕНИЕ МОДУЛЬНЫХ СООРУЖЕНИЙ ОЧИСТКИ 23

МОНИТОРИНГ БЕЗОПАСНОСТИ ГТС (ОЧИСТНЫХ СООРУЖЕНИЙ) В ПЕРИОД ПАВОДКОВЫХ ВОД И

ЭКСПЛУАТАЦИИ 25 ЗАКЛЮЧЕНИЕ 28

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧИКОВ 29

ВВЕДЕНИЕ

ОА «Ургалуголь» ведет разработку Ургальского месторождения Буреинского каменноугольного бассейна. Добыча угля оказывает отрицательное влияние на окружающую среду.

Большой объём карьерных вод, содержащих такие вещества, как бактериальные примеси и минеральные соли, откачивается предприятиями угольной промышленности на протяжении практически всего срока их работы.

Предельно допустимый состав карьерных вод отличается в зависимости от угольных бассейнов, месторождений и районов.

Сброс карьерных вод с вредными примесями в наземные воды непременно вызывает заиление, засоление и закисление водоёмов и водостоков, вследствие чего нарушается экоравновесие в угольных бассейнах. В соответствии со ст. 60 часть 6 п. 1 Водного кодекса "При эксплуатации водохозяйственной системы запрещается осуществлять сброс в водные объекты сточных вод, не подвергшихся санитарной очистке, обезвреживанию (исходя из недопустимости превышения нормативов допустимого воздействия на водные объекты и нормативов предельно допустимых концентраций вредных веществ в водных объектах), что является нарушением водного законодательства.

Для минимизации экологического ущерба от сброса неочищенных карьерных вод необходимо строительство очистных сооружений.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

Участок открытых работ шахты «Уграл» (разрез «Буреинский») Буреинского участка Ургальского каменноугольного месторождения находится в Буреинском межгорном артезианском бассейне. Глубина уровня подземных вод горизонта от 0.5 до 3.0 м и зависит от сезона. В летний период подземные воды горизонта имеют свободную поверхность и, в ненарушенных условиях - общий уровень с подмерзлотными трещинными водами. Зимой сезонно-мерзлыми породами обуславливается небольшой напор.

Водоносный горизонт в период сезонного питания восполняется за счет речных вод и за счет инфильтрации атмосферных осадков. Водовмещающими породами служат трещиноватые песчаники, алевролиты, пласты угля. Водообильность комплекса незначительная.

По фильтрационным параметрам водоносный комплекс не однороден как в плане, так и в разрезе за счет неравномерной трещиноватости толщи и частого переслаивания литологических разностей. Повышенная водообильность свойственна верхней части разреза, с глубиной залегания трещиноватость и проницаемость пород уменьшается, соответственно, ухудшаются фильтрационные характеристики комплекса. Водоносный комплекс напорно-безнапорный. В таликовых зонах рек водоносный комплекс гидравлически связан с подземными водами аллювиального водоносного горизонта.

Питание водоносного комплекса происходит за счет инфильтрации атмосферных осадков через таликовые зоны и перетекания подземных вод из аллювиального таликового водоносного горизонта.

Разработка Ургальского каменноугольного месторождения Буреинским разрезом ведется с 1999 года открытыми горными выработками до глубины 200 м. Гидрогеологические условия участка открытых горных работ весьма сложные с учетом наличия двух речных таликовых зон.

Учитывая горно-геологические особенности разреза и опыт эксплуатации Ургальского разреза, проектом принимается осущение участка с помощью внутрикарьерного водоотлива.

Расходы сточных вод показаны в таблице 1.

Таблица 1.

N۰

пп Наименование

потребителей Расходы воды

м3/ч

макс. м3/сут макс. тыс.

м3/год

- 1 Карьерный водоотлив 1995 47875 620,28
- 2 Поверхностные воды 936 24564 509,61

Концентрация карьерных вод до очистки принята по данным лабораторных исследований на действующем участке разреза «Буреинский».

Характеристика сточных вод до очистки приведены в таблице 2.

Таблица 2.

№ Наименование

загрязнений Ед. изм Исходная

концентрация

загрязнений, мг/л

- 1 Прозрачность 10
- 2 Запах при 20 □ С/60 □ С балл 0/0
- 3 Взвешенные вещества мг/дм3 318,6
- 4 Сухой остаток мг/дм3 86,0
- 5 рН ед. рН 7,8
- 6 Хлориды мг/дм3 10
- 7 Сульфат-анион мг/дм3 14
- 8 БПКполн мг/дм3 11,1
- 9 Нефтепродукты мг/дм3 0,036
- 10 Железо мг/дм3 0,19

В качестве исходных данных для проектирования системы водоотведения и очищения сточных и карьерных вод использованы следующие данные:

- расход сточных вод в м3/ч максимальный и среднегодовой;
- концентрация загрязняющих веществ в очищаемой воде и необходимая степень очистки;
- коэффициент фильтрации гравийно-галечникового грунта (Кф);
- показатель фильтрации;

ОПИСАНИЕ ТЕХНОЛОГИЧЕКОЙ СХЕМЫ ОЧИСТКИ ПРЕДПРИЯТИЯ

Внутрикарьерный водоотлив необходим для защиты карьера от размывания и затопления: для создания условий, при которых воды, попадающие в карьер, не препятствуют эффективному ведению горных работ по добыче угля.

Так как источниками поступления воды в карьер являются подземные воды и атмосферные осадки вода,

поступающая в карьер, собирается в водосборники, размещаемые в самых пониженных местах и затем откачивается насосными установками, расположенными у водосборников, далее подается по напорным трубопроводам в пруд-отстойник.

Рисунок 1. Продольный профиль понижения уровня воды в карьерном водоотливе (сточная вода поступает в водосборники, далее по трубопроводу уходит в очистные сооружения с последующим очищением). После отстаивания предусмотрено два места сброса: «основной - в ручей без названия, который впадает в реку Чегдомын ниже поселка и аварийный - непосредственно в речку в случае угрозы затопления р. «Буреинский», вызванной неблагоприятной гидрологической обстановкой, который расположен за границами земель поселений».

Рисунок 2. Схема расположения очистных сооружений и мест сброса Избыточный напор гаситься в колодцах-гасителях, предусмотренных перед прудом-отстойником.

Рисунок 3. Колодец-гаситель

Итак, в первую очередь колодец гаситель понижает скорость протекания канализационных стоков по трубам. По понятным причинам он же будет понижать и давление внутри трубопровода. Причина понижения – увеличение объема.

То есть, сам колодец – это емкость, объем которой в несколько раз превышает объем канализационных труб. При попадании стоков в резервуар их давление, вызванное напором насоса, тут же снижается. Такие конструкции стараются устанавливать на поворотах трубных трасс, потому что именно в этих местах создается наибольшее давление, которое начинает негативно влиять на стенки труб. А это может привести при долгосрочной эксплуатации к разгерметизации стыков, образуя протечку.

ОБОСНОВАНИЕ ПРОЦЕССОВ ОЧИСТКИ

Целью данного расчета является определение размеров секций пруда-отстойника, размеров фильтрующего массива и проверка его пропускной способности.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧИКОВ

- 1. С. В. Яковлев, Я. А. Карелин, А. И. Жуков, С. К. Колобанов. Канализация. Учебник для вузов. Изд. 5-е, перераб. И доп. М., Стройиздат, 1975. 632 с.
- 2. ТУ 2248-006-73011750-2009 Теплоизолированные трубы ИЗОКОРСИС для безнапорной канализации.
- 3. Гидротехнические сооружения. Справочник проектировщика./ Стройиздат М., 1983.
- 4. Методические указания по очистке промышленных сточных вод угледобывающих предприятий от взвешенных веществ в фильтрах из скальных пород / Кемеровоуголь Кемерово, 1985

Эта часть работы выложена в ознакомительных целях. Если вы хотите получить работу полностью, то приобретите ее воспользовавшись формой заказа на странице с готовой работой:

https://stuservis.ru/kursovaya-rabota/314423