Фрагмент для ознакомления
2
Введение
1. Теоретические представления о составе и функции клетки
1.1. Химические соединения клетки. Элементный состав клетки
Клетки всех живых организмов имеют сходный химический состав, включающий в себя органические и неорганические вещества. Каждое из таких соединений выполняет в структуре живого определенную функцию, которая связана с их строением.
Большая часть химических элементов, находящихся в Периодической системе Менделеева Д.И., обнаружена внутри живых клеток. Там они находятся не в хаотичном расположении, а образуют органические и неорганические соединения. Хотя соединений неорганического типа внутри «живого» больше, роль органических веществ гораздо значимее!
Областью биологии, занимающейся изучением химического состава клеток, является биохимия. На долю органических веществ выпала функция определения уникальности живого организма на планете.
Все содержащиеся внутри живых клеток элементы объединяют в две большие группы: микроэлементы и макроэлементы.
Внутри живых клеток содержится минимальная часть микроэлементов (0,01%), но без этого количества живые организмы не могут полноценно существовать. В категорию микроэлементов относят:
• фтор (формирует зубную эмаль);
• йод (синтезирует гормон щитовидной железы);
• кобальт (составная часть витамина В12);
• медь (участвует в дыхании);
• цинк (входит в состав инсулина);
• магний (входит в состав молекулы хлорофилла у растений);
• кремний (образование коллагеновых волокон);
• литий (регулирует процессы размножения).
Условия окружающей среды определяют концентрацию химических элементов внутри живого организма. К примеру, повышенное содержание меди имеется внутри моллюсков, а железа – в позвоночных организмах.
Внутри живого организма содержание макроэлементов составляет около 99%. Наиболее важная роль из них отводится:
• азоту;
• углероду;
• водороду;
• кислороду.
Это органогенные элементы, так как они образуют главные органические соединения. Остальные (сера, фосфор и прочие) отвечают за происходящие в живом организме процессы.
При избытке либо дефиците в организме микро- и макроэлементов развиваются различные заболевания. Поэтому, периодически следует восполнять концентрацию данных элементов в живом организме, увеличивая или уменьшая их количество в пище.
В категорию неорганических соединений относят минеральные соли и воду.
Минеральные соли представлены в организмах в нерастворенных либо растворенных формах. Их основной функцией служит поддержание буферных свойств цитоплазмы (постоянство слабощелочной реакции внутри цитоплазмы). Также они ответственны за формирование зубов и костей, участвуют в процессах кроветворения. У растений минеральные соли ответственны за интенсивность процесса фотосинтеза и рост.
Благодаря наличию в ее структуре прочных ковалентных связей, вода обладает ярко выраженными свойствами «растворителя».
К органическим соединениям, находящимся внутри живого относят:
Белки. Данные органические полимеры состоят из аминокислот, образуя в организме первичную, вторичную, третичную и четвертичную структуры строения. Основными их функциями являются: строительная (входят в состав клеточных мембран), защитная (иммунобелки) и транспортная (перенос кислорода гемоглобином).
Жиры. Это липидоподобные соединения, обладающие яркими гидрофобными свойствами. При расщеплении 1 г. жира высвобождается значительное количество энергии(38,9 кДж), идущей на поддержание температуры тела и выполнение движений.
Углеводы. Данные соединения состоят из углерода, кислорода и водорода. Различают следующие группы углеводов: моносахариды (глюкоза, фруктоза, рибоза), дисахариды (сахароза, мальтоза, лактоза) и полисахариды (крахмал, гликоген, целлюлоза). При их расщеплении выделяется много энергии, необходимой для протекания процессов жизнедеятельности. Также, они способны накапливаться как запасные питательные вещества в виде крахмала и гликогена.
Нуклеиновые кислоты. Представлены молекулами рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот. РНК ответственна за синтез белковых молекул и транспортировку аминокислот. ДНК отвечает за хранение наследственных признаков с их последующей передачей.
Аденозинтрифосфорная кислота. Состоит из: трех остатков фосфорной кислоты, аденина (азотистое основание) и рибозы (пятиосновного сахара). Молекулы аденозинтрифосфорной кислоты АТФ отвечают за идущий в митохондриях синтез энергии и ее хранение.
Выполняемые неорганическими и органическими веществами функции тесно связаны с их строением. Так, покрывающая клетку мембрана (оболочка) содержит в своем составе углеводы, белки и липиды. Находящиеся на поверхности клеточной оболочки белки-рецепторы воспринимают сигналы из окружающего пространства, выполняя тем самым рецепторную функцию.
Содержание липидов (жиров) внутри мембран определяет проницаемость оболочки для одних соединений и непроницаемость для других. Углеводы ответственны за синтез молекул АТФ, запасающих энергию. Аналогично связано строение других компонентов клетки с их составом.
Внутри живых организмов каждое химическое вещество играет определенную роль, благодаря чему весь организм способен полноценно жить. Так, присутствие в клетке магния способствует выработке некоторых ферментов и формированию хлорофилла у растений. Кальций формирует прочность зубов и костей человека, а также активирует работу волокон мышц.
Без серы в организме не смогут образовываться белки, а без ионов натрия и калия в клетку не смогут поступать некоторые соединения.
Функции химических элементов в клетке представлены в таблице 1.1.
Таблица 1.1.
Функции химических элементов в клетке
Элемент Функция
O, H Входят в состав воды;
среда для протекания биохимических реакций;
донор электронов при фотосинтезе;
обуславливает рН среды;
транспорт веществ;
универсальный растворитель;
теплопроводность, теплоемкость.
C, O, H, N входят в состав белков, жиров, липидов, нуклеиновых кислот, полисахаридов.
K, Na, Cl проводят нервные импульсы.
Ca компонент костей, зубов необходим для мышечного сокращения, компонент свертывания крови, посредник в механизме действия гормонов.
Mg структурный компонент хлорофилла, поддерживает работу рсом и митохондрий
Fe структурный компонент гемоглобина, миоглобина.
Окончание таблицы 1.1.
S в составе серосодержащих аминокислот, белков.
P в составе нуклеиновых кислот, костной ткани.
B необходим некоторым растениям.
Mn, Zn, Cu активаторы ферментов, влияют на процессы тканевого дыхания.
Co входит в состав витамина В12.
F состав эмали зубов.
I состав тироксина.
Макроэлементы являются основой биополимеров, а именно белков, углеводов, нуклеиновых кислот и липидов. Микроэлементы входят в состав жизненно важных органических веществ, участвуют в обменных процессах. Они являются составными компонентами минеральных солей, которые находятся в виде катионов и анионов, их соотношение определяет щелочную среду. Чаще всего она слабощелочная, ведь соотношение минеральных солей не изменяется.
Некоторые химические элементы являются компонентами неорганических веществ, например, воды. Она играет большую роль в жизнедеятельности как растительной, так и животной клетки. Вода является растворителем, из-за этого все вещества внутри организма делятся на: гидрофильные, т.е. те которые растворяются в воде и гидрофобные, т.е. те которые не растворяются в воде.
Благодаря наличию воды клетка становится упругой, она способствует перемещению органических веществ в цитоплазме.
Клетки живой природы имеют свой набор химических элементов. По своему составу предметы живой и неживой природы похожи. Клетка состоит из макроэлементов, микроэлементов и ультрамикроэлементов, у каждого из которых есть своя роль. Отсутствие хотя бы одного из них ведёт к заболеванию и даже гибели всего организма.
1.2. Органические вещества клетки
Существует 4 класса органических веществ, входящих в состав клеток: белки, жиры, углеводы и нуклеиновые кислоты.
Биополимеры.
Биологические полимеры – высокомолекулярные органические соединения, молекулы которых состоят из большого числа повторяющихся звеньев – мономеров. К биополимерам относятся белки (состоят из аминокислот), нуклеиновые кислоты (состоят из нуклеотидов), полисахариды и их производные (состоят из моносахаридов).
По форме биополимеров могут быть линейными (белки, нуклеиновые кислоты, целлюлоза) или ветвящимися (гликоген, крахмал).
Рассмотрим свойства биополимеров.
1. Кооперативность. Тесная взаимосвязь всех функциональных групп, то есть взаимодействие одних групп
Показать больше