Фрагмент для ознакомления
2
1. КОДИРОВАНИЕ ТЕКСТОВОЙ И ГРАФИЧЕСКОЙ ИНФОРМАЦИИ.
Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появле-нием компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и ариф-метика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.
Двоичное кодирование - один из распространенных способов представления информации. В вычис-лительных машинах, в роботах и станках с числовым программным управлением, как правило, вся инфор-мация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.
Кодирование символьной (текстовой) информации.
Основная операция, производимая над отдельными символами текста - сравнение символов.
При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.
Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при ко-дировании и декодировании одного и того же текста использовалась одна и та же таблица.
Таблица перекодировки - таблица, содержащая упорядоченный некоторым образом перечень коди-руемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и об-ратно.
Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.
Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.
Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью од-ной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.
Кодирование графической информации.
Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).
Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения
Векторное изображение представляет собой графический объект, состоящий из элементарных гео-метрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется ко-ординатами точек и величиной радиуса. Для каждой линии указывается двоичные коды типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.
Растровое изображение представляет собой совокупность точек (пикселей), полученных в результа-те дискретизации изображения в соответствии с матричным принципом.
Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.
Pixel (picture element - элемент рисунка) - минимальная единица изображения, цвет и яркость кото-рой можно задать независимо от остального изображения.
В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображае-мые на экране дисплея, получаемые с помощью сканера.
Качество изображения будет тем выше, чем "плотнее" расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.
Для черно-белого изображения код цвета каждого пикселя задается одним битом.
Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.
Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возмож-ность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета - так называемый режим “истинного цвета" (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.
2. КОДЫ ASCII И UNICODE.
ASCII (American Standard Code for Informational Interchange — Американский стандартный код ин-формационного обмена).
Для хранения двоичного кода одного символа выделен 1 байт = 8 бит. Учитывая, что каждый бит принимает значение 1 или 0, количество возможных сочетаний единиц и нулей равно . Значит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их помощью 256 различных символов. Эти коды и составляют таблицу ASCII. Для сокращения записи и удобства поль-зования этими кодами символов в таблице используют шестнадцатеричную систему счисления, состоящую из 16 символов — 10 цифр и 6 латинских букв: А, В, С, D, Е, F. При кодировании символов сначала записы-вается цифра столбца, а затем — строки, на пересечении которых находится данный символ.
В настоящее время широко распространен код Unicode. Эта кодировка поддерживается в большин-стве операционных систем, во всех современных браузерах и многих программах.
Стандарт Unicode явился результатом сотрудничества Международной организации по стандарти-зации (ISO) с ведущими производителями компьютеров и программного обеспечения. В мире существует 6700 живых языков, но только 50 из них являются официальными языками государств. Письменностей ис-пользуется около 25, что делает возможным создание универсального стандарта.
Для кодирования этих письменностей достаточно 16-битового диапазона (2 байта на символ), то есть диапазона от 0000 до FFFF. Стандарт ASCII занимает в кодовом пространстве свое почетное место в диапазоне от 0000 до 00FF. Каждой письменности выделен свой блок кодов. На сегодняшний день кодиро-вание всех живых официальных письменностей считается завершенным — распределено около 29 000 по-зиций из 65 535 возможных.
3. КЛАССИФИКАЦИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ.
При физическом соединении двух или более компьютеров образуется компьютерная сеть. В общем случае, для создания компьютерных сетей необходимо специальное аппаратное обеспечение (сетевое обо-рудование) и специальное программное обеспечение (сетевые программные средства).
Все многообразие компьютерных сетей можно классифицировать по четырём признакам.
Рис. 1. Классификация компьютерных сетей
Разберем каждую классификацию подробно.
1) Среда передачи называется еще "линией связи". Информация передается по линиям связи в виде различных сигналов, которые, испытывая сопротивление среды, затухают с расстоянием. Поэтому одной из важнейших характеристик линии связи является максимальная дальность, на которую может быть передана по ней информация без искажения.
Показать больше