Фрагмент для ознакомления
2
Введение
Преобразование переменного тока в постоянный является в настоящее время наиболее распространенным видом преобразования электрической энергии. Полупроводниковые управляемые выпрямители нашли широкое применение в различных отраслях промышленности: на железнодорожном транспорте, питания процессов электролиза в цветной металлургии и химической промышленности, в системах возбуждения крупных электрических генераторов, для питания систем электропривода постоянного тока различного назначения и мощности, на тяговых подстанциях и магистральных электровозах и т.д.
При всем разнообразии схем и нагрузок методика расчета данного класса преобразователей одинакова и может быть сведена к расчету и выбору элементов одного комплекта управляемого выпрямителя.
Исходные данные:
Напряжение сети 380\220В, возможное отклонение напряжения - 5%.
Нагрузка – двигатель постоянного тока с номинальными параметрами: мощность на валу Рн=2002 Вт, напряжение Uн=220В, ток Iн=13А, частота вращения 100 рад/с. Минимальное напряжение преобразователя Uмин=22В, значение непрерывного тока нагрузки Iмин=0,151н, расчетная температура окружающей среды t=25 градусов.
Схема преобразователя однофазная мостовая симметричная.
Рисунок 1. Расчетная схема выпрямителя
1. Подготовка и анализ исходной информации
1.1 Условия охлаждения преобразователя
Температура полупроводниковой структуры прибора определяется мощностью, рассеиваемой в структуре, тепловыми сопротивлениями элементов конструкции прибора и условиями его охлаждения.
Наибольшее распространение получило воздушное охлаждение (естественное и принудительное) как наиболее простое в реализации. Естественное воздушное охлаждение повышает надежность функционирования преобразовательной установки и является предпочтительным до токов нагрузки IdH = 800…1000 A.
При больших нагрузках необходимо использовать принудительное воздушное охлаждение, чтобы повысить нагрузочную способность полупроводниковых приборов и избежать их группового (параллельного) соединения в плече преобразовательной установки. Целесообразно скорость охлаждающей среды принимать равной при естественном охлаждении VС = 0 м/с, при принудительном воздушном VС = 6 м/с (экономичный режим). При более высоких скоростях нагрузочная способность полупроводниковых приборов увеличивается незначительно, а мощность двигателя охлаждающих устройств возрастает существенно.
Температура охлаждающей среды ТС определяется климатической зоной и условиями работы преобразователя. Для учебного проектирования можно принять ТС = 25…40 °С.
Для того чтобы при выборе полупроводниковых приборов иметь возможность воспользоваться данными по их максимальным допустимым токам, приведенным в информационных материалах, необходимо все возможные при эксплуатации режимы привести к нормализованному с неизменным рабочим током. Для этого используется график нагрузки преобразователя на расчетном интервале tp , в течение которого наступает установившийся тепловой режим прибора. Можно принять при естественном воздушном охлаждении tp = 2000 с, при принудительном воздушном охлаждении со скоростью движения среды VC = 6 м/с tp = 1000 с, при VC = 2 м/с или принудительном водяном охлаждении tp = 600 с.
При отсутствии графика в качестве расчетного можно принять номинальный ток нагрузки: Id = IdH .
Исходя их условия Id = IdH = 13 А < IdH = 800…1000 А, выбираем для заданного выпрямителя естественное воздушное охлаждение.
Расчетный ток нагрузки
В качестве расчетного можно принять номинальный ток нагрузки: Id = IdH . Id = IdH = 13 А
1.2 Параметры цепи нагрузки
Для двигателя постоянного тока активное сопротивление его якорной цепи RЯЦ, состоящее из сопротивлений обмоток якоря RЯ , дополнительных полюсов RДП и компенсационной RК , может быть вычислено по приближенной формуле:
RЯЦ = RЯ + RДП + RК = 0.6(UН IН – РН )/ IН 2 , где
UН , IН , РН - соответственно номинальные напряжение, ток, мощность электродвигателя постоянного тока.
RЯЦ = 0.6(220 × 13 – 140) / 13 = 138 (Ом).
Собственная индуктивность якоря двигателя определяется по формуле Лиумвиля-Уманского:
, где (1.2)
КL – конструктивный коэффициент (для нормальных некомпенсированных машин КL = 8 - 10, возьмем КL =10 – нормальная некомпенсированная машина), – число пар полюсов двигателя, nн –номинальная скорость вращения.
10(2200/(6*1000*13)=2,8 ммГн
Рисунок 2. Принципиальная электрическая схема управляемого выпрямителя
1.3 Схема преобразователя
С1 ÷ С3 – МБГЧ-1 4 мкФ х 500 В
QF 1 ÷ QF 2 – А3711Б 160 А
TV 1 – ТС-25/0,66 380 / 220 В
R 1 ÷ R 6 – МЛТ-2 16 Ом
С4 ÷ С9 – К78-6 0,68 мкФ х 630 В
М1 – П72 =220 В, 14 кВт, 1000 об/мин
VS 1 ÷ VS 6 – T161-160-5
Регулировочная характеристика Uн ср a = Ƞ (a).
Внешняя (нагрузочная) характеристика Ud =f(Ƞ1).
Перегрузочные характеристики Ƞ = Uн ср(t).
Рисунок 3. Перегрузочная характеристика управляемого выпрямителя
2. Выбор согласующего трансформатора или токоограничительного реактора
2.1 Выбор вида связи выпрямителя с сетью
В качестве звена, согласующего выпрямительный блок с сетью переменного тока, может использоваться согласующий трансформатор либо токоограничивающий реактор. Согласующий трансформатор может применяться для следующих целей:
1) изменить величину переменного напряжения сети в соответствии с принятой схемой выпрямления;
2) преобразовать число фаз сети переменного напряжения и/или задать среднюю точку;
3) своим сопротивлением понизить токи короткого замыкания при внутренних и внешних повреждениях в выпрямителе и ограничить скорость нарастания прямого тока вентилей в коммутационных процессах.
Токоограничительный реактор (ТОР) может выполнить только третью задачу.
Для трехфазного мостового симметричного преобразователя возможно применение как согласующего трансформатора, так и токоограничивающего реактора, следовательно, необходим дополнительный анализ.
Преобразователь должен обеспечить номинальное напряжение на нагрузке в нормальных режимах работы с учетом минимально допустимых углов регулирования, возможных понижения сети и падений напряжения в элементах установки (вентильной схеме, сглаживающем реакторе, соединительных проводах).
, где (2.1)
Ud н = 220 В – номинальное напряжение нагрузки; Id Rc – падение напряжения на активных сопротивлениях цепи выпрямленного тока
Показать больше
Фрагмент для ознакомления
3
Список использованных источников
1. Глух Е.М. Защита полупроводниковых преобразователей / Е.М. Глух, В.Е. Зеленов. - 2-е изд. - М.: Энергоиздат, 2010. - 152 с.
2. Диоды и тиристоры в преобразовательных установках / М.И. Абрамович, В.М. Бабайлов, В.Е. Либер и др. – М.: Энергоатомиздат, 2006. - 432 с.
3. Замятин В.Я. Мощные полупроводниковые приборы. Тиристоры: справочник / В.Я. Замятин, Б.В. Кондратьев, В.М. Петухов и др. - М.: Радио и связь, 2011.-576 с.
4. Зимин Е.Н. Электроприводы постоянного тока с вентильными преобразователями / Е.Н. Зимин, В.Л. Кацевич, С.К. Козырев. – М.: Энергоиздат, 2003. – 190 с.
5. Комплектные тиристорные электроприводы: справочник / И.X. Евзеров, А.С. Горобец, Б.И. Мошкович и др. ; под ред. В.М. Перельмутера. - М.: Энергоатомиздат, 2006. – 319 с.
6. Полупроводниковые выпрямители / В.И. Беркович, В.Н. Ковалев, Ф.И. Ковалев и др. ; под ред. Ф.И. Ковалева, Г.П. Мостковой. - 2-е изд. - М.: Энергия, 2015. - 448 с.
7. Руденко В.С. Основы преобразовательной техники: учеб. для вузов / В.С. Руденко, В.И. Сенько, И.М. Чиженко. - 2-е изд., перераб. и доп. - М.: Высшая школа, 2014. - 424 с.
8. Справочник по преобразовательной технике / под ред. И.М. Чиженко - Киев: Техника, 2014. - 447с.
9. Управляемый выпрямитель: методические указания к курсовому проектированию для студентов специальности 200400 / Мин-во общ. и проф. обр. РФ, ИГЭУ, Каф. электроники и микропроцессорных систем ; сост. В.И. Шишков, ред. Б.П. Силуянов. – Иваново: Изд-во ИГЭУ, 2018. – 41 с.
10. Характеристики полупроводниковых преобразователей: учеб. пособие / Н.Л. Архангельский, Б.С. Курнышев ; Мин-во общ. и проф. обр. РФ, ИГЭУ. - Иваново: Изд-во ИГЭУ, 2015. - 72 с.
11. Чебовский О.Г. Силовые полупроводниковые приборы: справочник / О.Г. Чебовский, Л.Г. Моисеев, Р.П. Недошивин. - 2-е изд., перераб. и доп. - М.: Энергоатомиздат, 2016. - 400 с.